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8.1 THE NORMALITY ASSUMPTION

 We continue to assume that the u follow the
normal distribution with zero mean and
constant variance o?.

* With normality assumption we find that the
OLS estimators of the partial regression
coefficients are best linear unbiased
estimators (BLUE).



8.1 THE NORMALITY ASSUMPTION

Moreover, the estimators f>, B3, and B are
themselves normally distributed with means equal to true B3, B3, and B; and
the variances given in Chapter 7. Furthermore, (n — 3)6% /02 follows the yx?
distribution with n — 3 df, and the three OLS estimators are distributed in-
dependently of 62. The proofs follow the two-variable case discussed in
Appendix 3. As a result and following Chapter 5, one can show that, upon
replacing o2 by its unbiased estimator 6% in the computation of the stan-
dard errors, each of the following variables

.31 P
se(Br)
_B—8
 se(pa)
B3 — Bs follows the ¢ distribution with n — 3 df.

t = :
se (B3)



8.1 THE NORMALITY ASSUMPTION

Note that the df are now n — 3 because in computing ) #? and hence 62
we first need to estimate the three partial regression coefficients, which
therefore put three restrictions on the residual sum of squares (RSS) (fol-
lowing this logic in the four-variable case there will be n — 4 df, and so on).
Therefore, the ¢ distribution can be used to establish confidence intervals as
well as test statistical hypotheses about the true population partial regres-
sion coefficients. Similarly, the x? distribution can be used to test hypothe-
ses about the true o?. To demonstrate the actual mechanics, we use the fol-
lowing illustrative example.



3.2 EXAMPLE 8.1: CHILD MORTALITY
EXAMPLE REVISITED

In Chapter 7 we regressed child mortality (CM) on per capita GNP (PGNP)
and the female literacy rate (FLR) for a sample of 64 countries. The regres-
sion results given in (7.6.2) are reproduced below with some additional
information:

CM; = 263.6416 — 0.0056 PGNP; —  2.2316 FLR;
se = (11.5932) (0.0019) (0.2099)
t=(22.7411) (-2.8187) (—10.6293) (8.2.1)
pvalue = (0.0000)"  (0.0065) (0.0000)"

R? =0.7077 R? = 0.6981

where ~ denotes extremely low value.



3.2 EXAMPLE 8.1: CHILD MORTALITY
EXAMPLE REVISITED

In Eq. (8.2.1) we have followed the format first introduced in Eq. (5.11.1),
where the figures in the first set of parentheses are the estimated standard
errors, those in the second set are the ¢ values under the null hypothesis that
the relevant population coefficient has a value of zero, and those in the third
are the estimated p values. Also given are R?> and adjusted R? values. We
have already interpreted this regression in Example 7.1.

What about the statistical significance of the observed results? Consider,
for example, the coefficient of PGNP of —0.0056. Is this coefficient statisti-
cally significant, that is, statistically different from zero? Likewise, is the
coefficient of FLR of —2.2316 statistically significant? Are both coefficients
statistically significant? To answer this and related questions, let us first
consider the kinds of hypothesis testing that one may encounter in the con-
text of a multiple regression model.



8.3 HYPOTHESIS TESTING IN MULTIPLE REGRESSION:
GENERAL COMMENTS

Once we go beyond the simple world of the two-variable linear regression
model, hypothesis testing assumes several interesting forms, such as the
following:

1. Testing hypotheses about an individual partial regression coefficient
(Section 8.4)

2. Testing the overall significance of the estimated multiple regression
model, that is, finding out if all the partial slope coefficients are simultane-
ously equal to zero (Section 8.5)

3. Testing that two or more coefficients are equal to one another
(Section 8.6)

4. Testing that the partial regression coefficients satisfy certain restric-
tions (Section 8.7)

5. Testing the stability of the estimated regression model over time or in
different cross-sectional units (Section 8.8)

6. Testing the functional form of regression models (Section 8.9)

Since testing of one or more of these types occurs so commonly in empiri-
cal analysis, we devote a section to each type.



8.4 HYPOTHESIS TESTING ABOUT
INDIVIDUAL REGRESSION COEFFICIENTS

If we invoke the assumption that z; ~ N(0, 02), then, as noted in Section 8.1,
we can use the 7 test to test a hypothesis about any individual partial regres-
sion coefficient. To illustrate the mechanics, consider the child mortality re-
gression, (8.2.1). Let us postulate that

Ho:ﬂz =0 and H]iﬂp_ #O

The null hypothesis states that, with X3 (female literacy rate) held con-
stant, X, (PGNP) has no (linear) influence on Y (child mortality).? To test the
null hypothesis, we use the ¢ test given in (8.1.2). Following Chapter 5 (see
Table 5.1), if the computed ¢ value exceeds the critical ¢ value at the chosen
level of significance, we may reject the null hypothesis; otherwise, we may
not reject it. For our illustrative example, using (8.1.2) and noting that
B2 = 0 under the null hypothesis, we obtain

—0.0056
— — —7 «“Te
0.0020 2.8187 (8.4.1)

as shown in Eq. (8.2.1).



8.4 HYPOTHESIS TESTING ABOUT
INDIVIDUAL REGRESSION COEFFICIENTS

Notice that we have 64 observations. Therefore, the degrees of freedom in
this example are 61 (why?). If you refer to the ¢ table given in Appendix D,
we do not have data corresponding to 61 df. The closest we have are for
60 df. If we use these df, and assume «, the level of significance (i.e., the
probability of committing a Type I error) of 5 percent, the critical ¢ value is
2.0 for a two-tail test (look up ¢,/; for 60 df) or 1.671 for a one-tail test (look
up t, for 60 df).

For our example, the alternative hypothesis is two-sided. Therefore, we
use the two-tail £ value. Since the computed ¢ value of 2.8187 (in absolute
terms) exceeds the critical ¢ value of 2, we can reject the null hypothesis that
PGNP has no effect on child mortality. To put it more positively, with the fe-
male literacy rate held constant, per capita GNP has a significant (negative)
effect on child mortality, as one would expect a priori. Graphically, the situ-
ation is as shown in Figure 8.1.



8.4 HYPOTHESIS TESTING ABOUT
INDIVIDUAL REGRESSION COEFFICIENTS

FIGURE 8.1
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8.4 HYPOTHESIS TESTING ABOUT
INDIVIDUAL REGRESSION COEFFICIENTS

In practice, one does not have to assume a particular value of a to con-
duct hypothesis testing. One can simply use the p value given in (8.2.2),
which in the present case is 0.0065. The interpretation of this p value (i.e.,
the exact level of significance) is that if the null hypothesis were true, the
probability of obtaining a ¢ value of as much as 2.8187 or greater (in ab-
solute terms) is only 0.0065 or 0.65 percent, which is indeed a small proba-
bility, much smaller than the artificially adopted value of « = 5%.



8.4 HYPOTHESIS TESTING ABOUT
INDIVIDUAL REGRESSION COEFFICIENTS

In Chapter 5 we saw the intimate connection between hypothesis testing
and confidence interval estimation. For our example, the 95% confidence in-
terval for B, is:

By —tyase(B2) < B2 < Ba + tus2 se(B2)

which in our example becomes

—0.0056 — 2(0.0020) < > < —0.0056 + 2(0.0020)

that is,
—0.0096 < B, < —0.0016 (8.4.2)

that is, the interval, —0.0096 to —0.0016 includes the true B, coefficient with
95% confidence coefficient. Thus, if 100 samples of size 64 are selected and
100 confidence intervals like (8.4.2) are constructed, we expect 95 of them to
contain the true population parameter f,. Since the interval (8.4.2) does not
include the null-hypothesized value of zero, we can reject the null hypothe-
sis that the true B, is zero with 95% confidence.



8.4 HYPOTHESIS TESTING ABOUT
INDIVIDUAL REGRESSION COEFFICIENTS

——

CM; =263.6416 — 0.0056 PGNP; — 2.2316 FLR;
se=(11.5932) (0.0019) (0.2099)
t=(22.7411) (-2.8187) (—10.6293) (8.2.1)
p value = (0.0000) (0.0065) (0.0000)"

R*=0.7077 R?* = 0.6981

Following the procedure just described, we can test hypotheses about the
other parameters of our child mortality regression model. The necessary
data are already provided in Eq. (8.2.1). For example, suppose we want to
test the hypothesis that, with the influence of PGNP held constant, the
female literacy rate has no effect whatsoever on child mortality. We can con-
fidently reject this hypothesis, for under this null hypothesis the p value of
obtaining an absolute ¢ value of as much as 10.6 or greater is practically zero.



8.5 TESTING THE OVERALL SIGNIFICANCE
OF THE SAMPLE REGRESSION

Throughout the previous section we were concerned with testing the signif-
icance of the estimated partial regression coefficients individually, that is,
under the separate hypothesis that each true population partial regression
coefficient was zero. But now consider the following hypothesis:

Hoiﬁz = ,83 =9 (8.5.1)

This null hypothesis is a joint hypothesis that g, and B3 are jointly or simul-
taneously equal to zero. A test of such a hypothesis is called a test of the
overall significance of the observed or estimated regression line, that is,
whether Y is linearly related to both X; and X3.



The Analysis of Variance Approach to Testing the Overall
Significance of an Observed Multiple Regression: The F Test

we cannot use the usual 7 test to test the joint
hypothesis that the true partial slope coefficients are zero simultaneously.
However, this joint hypothesis can be tested by the analysis of variance
(ANOVA) technique first introduced in Section 5.9, which can be demon-
strated as follows.

ANOVA TABLE FOR THE THREE-VARIABLE REGRESSION

Source of variation SS df MSS

Due to regression (ESS) Bo X ViXoi + B3 Y. ViXa 2 Pa ) YiXei Zﬁ:; 2 YiXa
-2

Due to residual (RSS) Y a? n—3 62 = nZU,- .

Total ¥ ¥> n—1




The Analysis of Variance Approach to Testing the Overall
Significance of an Observed Multiple Regression: The F Test

Recall the identity

Y =B ) vixa+Bs Y yixsi+ Y i (8.5.2)
TSS =  ESS  +RSS

TSS has, as usual, n— 1 df and RSS has n — 3 df for reasons already dis-
cussed. ESS has 2 df since it is a function of B> and Bs. Therefore, following
the ANOVA procedure discussed in Section 5.9, we can set up Table 8.1.

Now it can be shown® that, under the assumption of normal distribution
for u; and the null hypothesis 8, = B3 = 0, the variable

B2 Y yixai + Bs > ¥ix3i) /2 _ ESS/df

po B,
it [(n—3) RSS/df

(8.5.3)

is distributed as the F distribution with 2 and n — 3 df.



The Analysis of Variance Approach to Testing the Overall
Significance of an Observed Multiple Regression: The F Test

Therefore, the F value of (8.5.3) provides a test of the null hypothesis that
the true slope coefficients are simultaneously zero. If the F value computed
from (8.5.3) exceeds the critical F value from the F table at the « percent
level of significance, we reject Hy; otherwise we do not reject it. Alterna-
tively, if the p value of the observed F is sufficiently low, we can reject Hy.

TABLE 8.3 ANOVA TABLE FOR THE CHILD MORTALITY EXAMPLE

Source of variation SS df MSS
Due to regression 257,362.4 2 128,681.2
Due to residuals 106,315.6 61 1742.88

Total 363,678 63




The Analysis of Variance Approach to Testing the Overall
Significance of an Observed Multiple Regression: The F Test

Using (8.5.3), we obtain

128,681.2
p= = 73.8325 D
1742.88 o)

The p value of obtaining an F value of as much as 73.8325 or greater is
almost zero, leading to the rejection of the hypothesis that together PGNP
and FLR have no effect on child mortality. If you were to use the conventional
5 percent level-of-significance value, the critical F value for 2 df in the nu-
merator and 60 df in the denominator (the actual df, however, are 61) is about
3.15 or about 4.98 if you were to use the 1 percent level of significance. Obvi-
ously, the observed F of about 74 far exceeds any of these critical F values.

We can generalize the preceding F-testing procedure as follows.



Testing the Overall Significance of a
Multiple Regression: The F Test

Decision Rule. Given the k-variable regression model:

Yi = B1+ B2 Xoi + B3 Xzi + -+ -+ BieXui + 1
To test the hypothesis
Hoy:pr=p3=:---=p.=0
(i.e., all slope coefficients are simultaneously zero) versus
Hi: Not all slope coefficients are simultaneously zero

compute

_ ESS/df  ESS/(k—1)
~ RSS/df  RSS/(n—k)

(8.5.7)

If F>F,k—1,n—k), reject Hp; otherwise you do not reject it, where
F,(k — 1, n—k) is the critical F value at the a level of significance and (k — 1)
numerator df and (n — k) denominator df. Alternatively, if the p value of F
obtained from (8.5.7) is sufficiently low, one can reject Hp.



Testing the Overall Significance of a
Multiple Regression: The F Test

Individual versus Joint Testing of Hypotheses. In Section 8.4 we
discussed the test of significance of a single regression coefficient and in
Section 8.5 we have discussed the joint or overall test of significance of the
estimated regression (i.e., all slope coefficients are simultaneously equal to
zero). We reiterate that these tests are different. Thus, on the basis of
the t test or confidence interval (of Section 8.4) it is possible to accept the
hypothesis that a particular slope coefficient, B, is zero, and yet reject the
joint hypothesis that all slope coefficients are zero.

The lesson to be learned is that the joint “message” of individual confidence in-
tervals is no substitute for a joint confidence region [implied by the F test] in per-
forming joint tests of hypotheses and making joint confidence statements.®



An Important Relationship between R% and F

There is an intimate relationship between the coefficient of determination
R? and the F test used in the analysis of variance. Assuming the normal dis-
tribution for the disturbances #; and the null hypothesis that g, = g3 =0,
we have seen that

_ ESS)2
~ RSS/(n—3)

(8.5.8)

is distributed as the F distribution with 2 and n — 3 df.



An Important Relationship between R% and F

More generally, in the k-variable case (including intercept), if we assume
that the disturbances are normally distributed and that the null hypothesis is

HyB=p=:-=p=0 (8.5.9)
then it follows that

_ESS/(k—1)

= RSS/i =D (8.5.7) =(8.5.10)

follows the F distribution with k — 1 and n — k df. (Note: The total number of
parameters to be estimated is k, of which one is the intercept term.)



An Important Relationship between R% and F

Let us manipulate (8.5.10) as follows:

_ n—kESS
~ k—1RSS
_iz—k ESS

k— 1TSS —ESS
_n—k ESS/TSS

k—11—(ESS/TSS)

_n —k R?
T k—11-R?
RZ((k—1)

- (1-R%)/(n-Fk)

where use is made of the
definition R? = ESS/TSS. Equation
on the left shows how F and R?
are related. These two vary
directly. When R? =0, F is zero
ipso facto. The larger the R?, the
greater the F value. In the limit,
when R2 =1, Fis infinite. Thus the
F test, which is a measure of the
overall significance of the
estimated regression, is also a
test of significance of R2. In other
words, testing the null hypothesis
(8.5.9) is equivalent to testing the
null hypothesis that (the
population) R? is zero.



An Important Relationship between R? and F

For the three-variable case (8.5.11) becomes

R%/2

= )/ —3) (8.5.12)

F

By virtue of the close connection between F and R?, the ANOVA Table 8.1
can be recast as Table 8.4.
For our illustrative example, using (8.5.12) we obtain:

0.7077/2

= = 73.8726
(1 —-0.7077)/61

which is about the same as obtained before, except for the rounding errors.

One advantage of the F test expressed in terms of R? is its ease of compu-
tation: All that one needs to know is the R? value. Therefore, the overall F
test of significance given in (8.5.7) can be recast in terms of R? as shown in
Table 8.4.



Testing the Overall Significance of a Multiple
Regression in Terms of R?

Decision Rule. Testing the overall significance of a regression in terms
of R%: Alternative but equivalent test to (8.5.7).
Given the k-variable regression model:

Yi = Bi + BoXoi + B3 Xzi + -+ + B X + U
To test the hypothesis
Hy:po=ps3=---=p=0
versus
H;: Not all slope coefficients are simultaneously zero
compute

R?/(k—1)
(1—-R2)/(n-="F)
If F > Fyq—1.n-1), reject Hy; otherwise you may accept Hy where Fyg—1,,—t) is
the critical F value at the «a level of significance and (k — 1) numerator df and

(n — k) denominator df. Alternatively, if the p value of F obtained from
(8.5.13) is sufficiently low, reject Hy,.

=

(8.5.13)



When to Add a New Variable. The F-test procedure just outlined pro-
vides a formal method of deciding whether a variable should be added to a
regression model. Often researchers are faced with the task of choosing from
several competing models involving the same dependent variable but
with different explanatory variables. As a matter of ad hoc choice (because
very often the theoretical foundation of the analysis is weak), these re-
searchers frequently choose the model that gives the highest adjusted R’.
Therefore, if the inclusion of a variable increases R?, it is retained in the
model although it does not reduce RSS significantly in the statistical sense.



The question then becomes: When does the adjusted R? increase? It can be
shown that R? will increase if the t value of the coefficient of the newly added
variable is larger than 1 in absolute value, where the t value is computed
under the hypothesis that the population value of the said coefficient is zero
[i.e., the  value computed from (5.3.2) under the hypothesis that the true B
value is zero].!? The preceding criterion can also be stated differently: R? will
increase with the addition of an extra explanatory variable only if the F(=t?)
value of that variable exceeds 1.

Applying either criterion, the FLR variable in our child mortality example
with a ¢ value of —10.6293 or an F value of 112.9814 should increase R?,
which indeed it does—when FLR is added to the model, R? increases from
0.1528 to 0.6981.



